Redox Reactivity of the Tyrosine Radical and Fe^{ll1}₂ of the B2 Subunit of *E. coli* **Ribonucleotide Reductase**

Kin-Yu Lam, Denis G. Fortier, and A. Geoffrey Sykes*

Department of Chemistry, The University, Newcastle upon Tyne NEl 7RU, UK

Rate constants have been obtained for the biphasic electron-transfer reduction of Tyr¹ and Fe^{III}₂ of the B2 subunit of ribonucleotide reductase **(RNR)** with long-lived radical reductants, *e.g.* methyl viologen, MV+', generated *in situ* by reaction with dithionite.

The enzyme ribonucleotide reductase (RNR) is an essential component of all living cells, being responsible for the conversion of ribonucleotides to deoxyribonucleotides, prior to DNA formation.¹⁻⁴ It consists of two subunits, here referred to as B1 and B2, in 1:1 amounts. Protein B1 is dimeric, and in addition to redox active dithiol groups has binding sites for ribonucleotides, and regulatory sites for nucleotide diphosphates. Protein B2 *(Mr* 78000) has two identical polypeptides (375 amino acids), in which residue **122** is present as a radical Tyr.. The latter exists in the deprotonated phenolate form, and is stabilised in some way not fully understood by the Fe III 2.⁵⁻⁷ The two Fe^{III}s are μ -oxo bridged, and antiferromagnetically coupled with $J - 108$ cm⁻¹.⁸ The UV-VIS spectrum of Fe^{III}₂ has peaks at 325 and 375 nm similar to those observed for hemerythrin,⁹ whereas Tyr⁺ gives a sharp band at **410** nm, with some additional contribution to

Figure 1. Scan spectra showing absorbance decreases for the reduction of first Tyr' and then the Fe^{III}₂ of *E. coli* B2 ribonucleotide reductase (8 μ M) with phenosafarin (1.5 μ M) maintained in the reduced form by excess of dithionite (1 mm). Scans recorded every 1.5 min (first 10), and then every 10 min, with a longer time interval before the final spectrum was recorded. Air-free conditions, 25 "C, pH 7.5, *I* = 0.10 **^M** (NaCl).

the absorbance at nearby wavelengths. The characteristic green colour of B2 arises from this and the weaker absorbance at \sim 700 nm. The X-ray crystal structure of B2 is about to be published.10 In a recent paper Sahlin *et al.* have generated radical reductants using dithionite (which is itself unreactive with B2), and shown that the stoicheiometric reactions $Tyr \rightarrow$ Tyr and $Fe^{III}₂ \rightarrow Fe^{II}₂ occur.¹¹ The procedure here reported$ enables rate constants to be determined for the reactions of Tyr^{\cdot} and Fe^{III}₂ with such one-electron reductants.

The B2 subunit was isolated in good yield from an *E. coli* overproducer. 12 The activity of the isolated enzyme was confirmed in an assay procedure using B1. Concentrations were determined at 410 nm, ε 6600 M^{-1} cm⁻¹. The following procedure has been developed for studying the kinetics under air-free conditions. Degassed buffered (50 mm Tris) solutions of S2O42- and reagent (source of the radical) were prepared **in** a Miller Howe glove box ($O₂<$ 5 ppm). Two optical quartz cells were loaded with the same mix of $S_2O_4^{2-}$ and reagent using a Gilson Pipetman $(2-20 \mu l)$ and Hamilton syringe (1 ml). After thermostatting $(25^{\circ}C)$, the UV-VIS spectrophotometer base line was recorded. A small volume of B2 (8 µM) was then micro-syringed into one of the cells. Conditions selected were with $S_2O_4^2$ ² (1 mm) in a large excess of reagent $(2-250 \,\mu)$, $I = 0.10 \text{ M}$ (NaCl). Since reduction by $S_2O_4^2$ is thermodynamically favourable (and fast), 13 the reagent is maintained fully reduced throughout.

Figure 2. Showing biphasic behaviour for the reaction of the Tyr' and $Fe^{III}2$ of the B2 subunit of RNR with the benzyl viologen radical. The latter was kept at constant concentration (2.5μ) by an excess of dithionite (0.1 mm). Air-free conditions, 25° C, pH 7.5, $I = 0.10$ m (NaCl).

Absorbance changes were monitored by conventional spectrophotometry at 380 nm at which wavelength both Tyr' and Fe^{III}₂ absorb, Figure 1. Biphasic kinetics were observed, Figure 2. The kinetics are independent of the concentration of dithionite, and the Tyr is more reactive than $Fe^{III}₂$. No evidence was obtained for intermediate formation of FeII-FeIII, which is presumably rapidly reduced by a second mole of reductant. First-order rate constants $k_{1,obs}$ and $k_{2,obs}$ give linear dependences on reductant, enabling second-order rate constants k_1 and k_2 to be determined, Table 1. No dependence on pH was observed in the range 6.0-9.0.

On admitting O_2 and with careful shaking the absorbance of Tyr⁻ and Fe^{III}₂ is \sim 90% restored within 10 min. We note that the above electron-transfer rate constants correlate fairly well with driving force,¹⁵ and that in the case of the Methylene Blue radical (11 mV) only the Tyr^{\cdot} is reduced. In the latter (as with hydroxyurea), O_2 is unable to regenerate Tyr.

No reaction of $[Co(\text{sep})]^{2+}$ (-300 mV) and $S_2O_4^{2-}$ (460 mV) is observed with the Tyr[.] or $Fe^{III}₂$ of B2, and charge appears to be inhibitory.11.16 In the enzyme redox cycle

Table 1. Rate constants (25 °C) for the reduction of $\text{Tyr}^*(k_1)$ and Fe^{III}_2 (k_2) components of the B2 subunit of *E. coli* ribonucleotide reductase. The reagents listed were one-electron reduced by excess of $S_2O_4^2$ *in situ* to the corresponding radical forms, $pH 7.5$, $I = 0.10$ M (NaCl).

Stubbe and colleagues³ have indicated a mechanism involving an H-atom transfer from (and then back to) the **3'** carbon of ribonucleotides. With hydroxyurea (0.44 **M-1** s-1) and hydroxamic acid derivatives (e.g. Didox, $0.40 \text{ m}^{-1} \text{ s}^{-1}$), only the Tyr⁻ of B2 is reduced.17 The reduction potential for hydroxyurea has been determined by cyclic voltammetry and is 724 mV *(vs.* normal hydrogen electrode). For such reactions H-atom transfer is a possibility (Scheme 1).2

The aromaticity of the radicals in the present studies may be important because of their hydrophobic and/or planar properties. The Tyr' and Fe^{III} ₂ sites are buried,¹⁰ and the manner of electron transfer is of interest.

This work is being extended to explore further the features of electron-transfer and H-atom transfer reactivity exhibited by RNR.

We thank the North of England Cancer Campaign and Croucher Foundation (to K.-Y.L.), and NATO (Scholarship to D. G. F.) for support.

Received, 12th April 1990; Corn. 0101646B

References

- **1** B.-M. Sjsberg and A. Graslund, *Adv. Inorg. Bioch.,* **1983,5,87;** P. Reichard, *Annu. Rev. Biochem.,* **1988, 57, 349;** A. Graslund, M. Sahlin, and B.-M. Sjoberg, *Environ. Health Perspec.,* **1985,64, 139.**
- 2 M. Lammers and H. Follman, *Struct. Bonding,* **1983, 54, 27.**
- **3** G. A. Ashley and J. Stubbe, *Pharmacol. Therapeutics,* **1985, 30, 301;** J. Stubbe, *Biochemistry,* **1988, 27, 3893.**
- **4 L.** Thelander and P. Reichard, *Annu. Rev. Biochem.,* **1972, 48, 133.**
- **⁵**C. **L.** Atkin, L. Thelander, P. Reichard, and G. Lang, J. *Biol. Chem.,* **1973, 248, 7464.**
- **6** B.-M. Sjoberg, **T.** M. Loehr, and J. Sanders-Loehr, *Biochemistry,* **1982, 21, 96.**
- **7 J.** B. Lynch, C. Juarez-Garcia, E. Munck, and L. Que, J. *Biol. Chem.,* **1987, 264, 8091.**
- 8 **L.** Peterson, A. Graslund, **A.** Ehrenberg, B.-M. Sjoberg, and P. Reichard, *J. Biol. Chem.,* **1980, 255, 6706.**
- **9** G. **D.** Armstrong, T. Ramasami, and **A.** G. Sykes, *Inorg. Chem.,* **1985, 24, 3230.**
- **10** Structure determination carried out at the Biomedical School, Uppsala, Sweden, H. Eklund *et al..* unpublished work; referred to in presentation by L. Thelander, at International Conference on Bioinorganic Chemistry, MIT, Boston, July **1989;** for structure details see: P. Nordlund, B.-M. Sjoberg, and H. Eklund, *Nature (London),* **1990,345, 593.**
- **11 M.** Sahlin, A. Graslund, L. Petersson, A. Ehrenberg, and B.-M. Sjoberg, *Biochemistry,* **1989, 28, 2618.**
- **12** We thank Professor B.-M. Sjoberg for generous help and for providing the *E. coli* strain. The growing and extraction procedure is described in B.-M. Sjoberg, **S.** Hahne, H. Jornvall, M. Goransson, and B. E. Uhlin, *J. Biol. Chem.,* **1986, 261, 5658.**
- **13 K.** Tsukahara and R. G. Wilkins, J. *Am. Chem. SOC.,* **1985,107. 2632.**
- **14 S.** Steerken and P. Neta, J. *Phys. Chem.,* **1979, 83, 1134.**
- **15 W. M.** Clark, 'Oxidation-Reduction Potentials of Organic Systems,' Williams and Wilkins Co., Baltimore, USA.
- **16 I.** I. Creaser, R. J. Geue, J. M. Harrowfield, **A.** J. Herlt, A. M. Sargeson, M. R. Snow, and J. Springborg, J. *Am. Chem. SOC.,* **1982, 104, 6016.** Sepulchrate (sep) is the trivial name for **1.3,6,8,10,13,16,19-octa-azabicyclo[6.6.6]icosane.**
- **17 K.-Y.** Lam, **D.** G. Fortier. J. B. Thomson, and **A.** G. Sykes. *J. Chem. SOC., Chem. Commun.,* **1990, 658.**