Redox Reactivity of the Tyrosine Radical and Fe^{III_2} of the B2 Subunit of *E. coli* Ribonucleotide Reductase

Kin-Yu Lam, Denis G. Fortier, and A. Geoffrey Sykes*

Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, UK

Rate constants have been obtained for the biphasic electron-transfer reduction of Tyr[•] and Fe^{III}₂ of the B2 subunit of ribonucleotide reductase (RNR) with long-lived radical reductants, *e.g.* methyl viologen, MV^+ [•], generated *in situ* by reaction with dithionite.

The enzyme ribonucleotide reductase (RNR) is an essential component of all living cells, being responsible for the conversion of ribonucleotides to deoxyribonucleotides, prior to DNA formation.¹⁻⁴ It consists of two subunits, here referred to as B1 and B2, in 1:1 amounts. Protein B1 is dimeric, and in addition to redox active dithiol groups has binding sites for ribonucleotides, and regulatory sites for nucleotide diphosphates. Protein B2 (M_r 78000) has two

identical polypeptides (375 amino acids), in which residue 122 is present as a radical Tyr[•]. The latter exists in the deprotonated phenolate form, and is stabilised in some way not fully understood by the $\text{Fe}^{\text{III}_2.5-7}$ The two Fe^{III_8} are μ -oxo bridged, and antiferromagnetically coupled with $J - 108 \text{ cm}^{-1.8}$ The UV-VIS spectrum of Fe^{III_2} has peaks at 325 and 375 nm similar to those observed for hemerythrin,⁹ whereas Tyr[•] gives a sharp band at 410 nm, with some additional contribution to

Figure 1. Scan spectra showing absorbance decreases for the reduction of first Tyr⁻ and then the Fe^{III}₂ of *E. coli* B2 ribonucleotide reductase (8 μ M) with phenosafarin (1.5 μ M) maintained in the reduced form by excess of dithionite (1 mM). Scans recorded every 1.5 min (first 10), and then every 10 min, with a longer time interval before the final spectrum was recorded. Air-free conditions, 25 °C, pH 7.5, *I* = 0.10 M (NaCl).

the absorbance at nearby wavelengths. The characteristic green colour of B2 arises from this and the weaker absorbance at \sim 700 nm. The X-ray crystal structure of B2 is about to be published.¹⁰ In a recent paper Sahlin *et al.* have generated radical reductants using dithionite (which is itself unreactive with B2), and shown that the stoicheiometric reactions Tyr[•] \rightarrow Tyr and Fe^{III}₂ \rightarrow Fe^{II}₂ occur.¹¹ The procedure here reported enables rate constants to be determined for the reactions of Tyr[•] and Fe^{III}₂ with such one-electron reductants.

The B2 subunit was isolated in good yield from an E. coli overproducer.¹² The activity of the isolated enzyme was confirmed in an assay procedure using B1. Concentrations were determined at 410 nm, ε 6600 M⁻¹ cm⁻¹. The following procedure has been developed for studying the kinetics under air-free conditions. Degassed buffered (50 mM Tris) solutions of $S_2O_4^{2-}$ and reagent (source of the radical) were prepared in a Miller Howe glove box ($O_2 < 5$ ppm). Two optical quartz cells were loaded with the same mix of $S_2O_4^{2-}$ and reagent using a Gilson Pipetman (2-20 µl) and Hamilton syringe (1 ml). After thermostatting (25 °C), the UV-VIS spectrophotometer base line was recorded. A small volume of B2 (8 μм) was then micro-syringed into one of the cells. Conditions selected were with $S_2O_4^{2-}$ (1 mM) in a large excess of reagent (2–250 μ M), I = 0.10 M (NaCl). Since reduction by $S_2O_4^{2-}$ is thermodynamically favourable (and fast),¹³ the reagent is maintained fully reduced throughout.

Figure 2. Showing biphasic behaviour for the reaction of the Tyr^{*} and Fe^{III}₂ of the B2 subunit of RNR with the benzyl viologen radical. The latter was kept at constant concentration (2.5 μ M) by an excess of dithionite (0.1 mM). Air-free conditions, 25 °C, pH 7.5, I = 0.10 M (NaCl).

Absorbance changes were monitored by conventional spectrophotometry at 380 nm at which wavelength both Tyr[•] and Fe^{III}₂ absorb, Figure 1. Biphasic kinetics were observed, Figure 2. The kinetics are independent of the concentration of dithionite, and the Tyr[•] is more reactive than Fe^{III}₂. No evidence was obtained for intermediate formation of Fe^{III} which is presumably rapidly reduced by a second mole of reductant. First-order rate constants $k_{1,obs}$ and $k_{2,obs}$ give linear dependences on reductant, enabling second-order rate constants k_1 and k_2 to be determined, Table 1. No dependence on pH was observed in the range 6.0–9.0.

On admitting O_2 and with careful shaking the absorbance of Tyr[•] and Fe^{III}₂ is ~90% restored within 10 min. We note that the above electron-transfer rate constants correlate fairly well with driving force, ¹⁵ and that in the case of the Methylene Blue radical (11 mV) only the Tyr[•] is reduced. In the latter (as with hydroxyurea), O_2 is unable to regenerate Tyr[•].

No reaction of $[Co(sep)]^{2+}$ (-300 mV) and $S_2O_4^{2-}$ (460 mV) is observed with the Tyr or Fe^{III}₂ of B2, and charge appears to be inhibitory.^{11,16} In the enzyme redox cycle

Table 1. Rate constants (25 °C) for the reduction of Tyr (k_1) and Fe^{III} (k_2) components of the B2 subunit of *E. coli* ribonucleotide reductase. The reagents listed were one-electron reduced by excess of S₂O₄²⁻ *in situ* to the corresponding radical forms, pH 7.5, I = 0.10 M (NaCl).

Reagent	E°/mV	$k_1/M^{-1} \mathrm{s}^{-1}$	$k_2/M^{-1} s^{-1}$
Methyl Viologen (1)	-446	$4.5 imes 10^4$	$2.3 imes 10^3$
Benzyl Viologen (2)	-359	2.1×10^{4}	$1.1 imes 10^3$
Phenosafranine (3)	-252	3.0×10^{3}	373
Nile Blue (4)	-110	80	6.3
Methylene Blue (5)	11	11.2	

Stubbe and colleagues³ have indicated a mechanism involving an H-atom transfer from (and then back to) the 3' carbon of ribonucleotides. With hydroxyurea $(0.44 \text{ M}^{-1} \text{ s}^{-1})$ and hydroxamic acid derivatives (*e.g.* Didox, $0.40 \text{ M}^{-1} \text{ s}^{-1}$), only the Tyr• of B2 is reduced.¹⁷ The reduction potential for hydroxyurea has been determined by cyclic voltammetry and is 724 mV (*vs.* normal hydrogen electrode). For such reactions H-atom transfer is a possibility (Scheme 1).²

The aromaticity of the radicals in the present studies may be important because of their hydrophobic and/or planar properties. The Tyr and Fe^{III_2} sites are buried,¹⁰ and the manner of electron transfer is of interest.

This work is being extended to explore further the features of electron-transfer and H-atom transfer reactivity exhibited by RNR.

We thank the North of England Cancer Campaign and Croucher Foundation (to K.-Y.L.), and NATO (Scholarship to D. G. F.) for support.

Received, 12th April 1990; Com. 0/01646B

References

- B.-M. Sjøberg and A. Graslund, *Adv. Inorg. Bioch.*, 1983, 5, 87;
 P. Reichard, *Annu. Rev. Biochem.*, 1988, 57, 349; A. Graslund,
 M. Sahlin, and B.-M. Sjoberg, *Environ. Health Perspec.*, 1985, 64, 139.
- 2 M. Lammers and H. Follman, Struct. Bonding, 1983, 54, 27.
- 3 G. A. Ashley and J. Stubbe, *Pharmacol. Therapeutics*, 1985, 30, 301; J. Stubbe, *Biochemistry*, 1988, 27, 3893.
- 4 L. Thelander and P. Reichard, Annu. Rev. Biochem., 1972, 48, 133.
- 5 C. L. Atkin, L. Thelander, P. Reichard, and G. Lang, J. Biol. Chem., 1973, 248, 7464.
- 6 B.-M. Sjoberg, T. M. Loehr, and J. Sanders-Loehr, *Biochemistry*, 1982, 21, 96.
- 7 J. B. Lynch, C. Juarez-Garcia, E. Munck, and L. Que, J. Biol. Chem., 1987, 264, 8091.
- 8 L. Peterson, A. Graslund, A. Ehrenberg, B.-M. Sjoberg, and P. Reichard, J. Biol. Chem., 1980, 255, 6706.
- 9 G. D. Armstrong, T. Ramasami, and A. G. Sykes, *Inorg. Chem.*, 1985, 24, 3230.
- 10 Structure determination carried out at the Biomedical School, Uppsala, Sweden, H. Eklund *et al.*, unpublished work; referred to in presentation by L. Thelander, at International Conference on Bioinorganic Chemistry, MIT, Boston, July 1989; for structure details see: P. Nordlund, B.-M. Sjoberg, and H. Eklund, *Nature* (London), 1990, 345, 593.
- 11 M. Sahlin, A. Graslund, L. Petersson, A. Ehrenberg, and B.-M. Sjoberg, *Biochemistry*, 1989, 28, 2618.
- 12 We thank Professor B.-M. Sjoberg for generous help and for providing the *E. coli* strain. The growing and extraction procedure is described in B.-M. Sjoberg, S. Hahne, H. Jornvall, M. Goransson, and B. E. Uhlin, *J. Biol. Chem.*, 1986, **261**, 5658.
- 13 K. Tsukahara and R. G. Wilkins, J. Am. Chem. Soc., 1985, 107, 2632.
- 14 S. Steerken and P. Neta, J. Phys. Chem., 1979, 83, 1134.
- 15 W. M. Clark, 'Oxidation-Reduction Potentials of Organic Systems,' Williams and Wilkins Co., Baltimore, USA.
- 16 I. I. Creaser, R. J. Geue, J. M. Harrowfield, A. J. Herlt, A. M. Sargeson, M. R. Snow, and J. Springborg, J. Am. Chem. Soc., 1982, 104, 6016. Sepulchrate (sep) is the trivial name for 1,3,6,8,10,13,16,19-octa-azabicyclo[6.6.6]icosane.
- 17 K.-Y. Lam, D. G. Fortier, J. B. Thomson, and A. G. Sykes, J. Chem. Soc., Chem. Commun., 1990, 658.